Threadripper 3960X: the birth of ‘thrip’

I recently assembled a new workstation for home. My primary need was a machine for software development, including deep learning. This machine is named “thrip”.

Having looked hard at my options, I decided on AMD Threadripper 3960X as my CPU. A primary driver was of course bang for the buck. I wanted PCIe 4.0, at least 18 cores, at least 4-channel RAM, the ability to utilize 256G or more of RAM, and to stay in budget.

By CPU core count alone, the 3960X is over what I needed. On the flip side, it’s constrained to 256G of RAM, and it’s also more difficult to keep cool than most CPUs (280W TDP). But on price-per-core, and overall performance per dollar, it was the clear winner for my needs.

Motherboard-wise, I wanted 10G ethernet, some USB-C, a reasonable number of USB-A ports, room for 2 large GPUs, robust VRM, and space for at least three NVMe M.2 drives. Thunderbolt 3 would have been nice, but none of the handful of TRX40 boards seem to officially support it (I don’t know if this is an Intel licensing issue or something else). The Gigabyte board has the header and Wendell@Level1Techs seems to have gotten it working, but I didn’t like other aspects of the Gigabyte TRX40 AORUS EXTREME board (the XL-ATX form factor, for example, is still limiting in terms of case options).

I prefer to build my own workstations. It’s not due to being particularly good at it, or winding up with something better than I could get pre-built. It’s that I enjoy the creative process of selecting parts and putting it all together.

I had not assembled a workstation in quite some time. My old i7-2700K machine has met my needs for most of the last 8 years. And due to a global pandemic, it wasn’t a great time to build a new computer. The supply chain has been troublesome for over 6 months now, especially for some specific parts (1000W and above 80+ titanium PSUs, for example). We’ve also had a huge availability problem for the current GPUs from NVIDIA (RTX 3000 series) and AMD (Radeon 6000 series). And I wasn’t thrilled about doing a custom water-cooling loop again, but I couldn’t find a worthy quiet cooling solution for Threadripper and 2080ti without going custom loop. Given the constraints, I wound up with these parts as the guts:

  • Asus TRX40 ROG Zenith II Extreme Alpha motherboard
  • AMD Threadripper 3960X CPU (24 cores)
  • 256 gigabytes G.Skill Trident Z Neo Series RGB DDR4-3200 CL16 RAM (8 x 32G)
  • EVGA RTX 2080 Ti FTW3 Ultra GPU with EK Quantum Vector FTW3 waterblock
  • Sabrent 1TB Rocket NVMe 4.0 Gen4 PCIe M.2 Internal SSD
  • Seasonic PRIME TX-850, 850W 80+ Titanium power supply
  • Watercool HEATKILLER IV PRO for Threadripper, pure copper CPU waterblock

It’s all in a Lian Li PC-O11D XL case. I have three 360mm radiators, ten Noctua 120mm PWM fans, an EK Quantum Kinetic TBE 200 D5 PWM pump, PETG tubing and a whole bunch of Bitspower fittings.

My impressions thus far: it’s fantastic for Linux software development. It’s so nice to be able to run ‘make -j40‘ on large C++ projects and have them complete in a timely manner. And thus far, it runs cool and very quiet.

Leave a Reply